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HAMILTON'S PRINCIPLE AND NUMERICAL
SOLUTION OF THE VLASOV EQUATIONS

(H. R. Lewis)

The Vlasov system of integro-partial
differential equations, expressed in terms of
Lagrangian variables for the particles and Euler-
ian variables for the electromagnetic field, can be
derived from Hamilton's principle by using the
Lagrangian that was given by Low' and by Stur-
rock.? That Lagrangian can be generalized to
include systems in which there are present any of
a large class of material media that exhibit non-
linear polarizability and magnetizability, and also
to include forces of nonelectromagnetic character.
These possibilities allow convenient imposition of
certain kinds of particle and field boundary con-
ditions for finite systems, Not only can the exact
equations of motion for these systems be derived
from Hamilton's principle, it can also be used to
derive approximations to the exact equations of
motion. The approximate system of equations to
be emphasized here is a system of ordinary dif-
ferential equations in time, although the basic
method can be used to derive other approximate

E systems of equations--i.e,, a system of difference
equations, The method can be applied to any

Lagrangian system,

The first step in solving equations
approximately by any method is to choose the
form in which the desired functions are to be
represented, A common way of representing a

- function of continuous variables approximately is

.to specify the function on a mesh, i,e., to specify

Y

|

J

§§® . the function at each of a set of discrete values of

|

s====INn.
Sg===© __the arguments, Another method of representation
S==0! . .
AES i~ frequently used is to approximate the function by
P
S=0O| _ o
m==£c° "“ independent basis functions. The type of rep-

o=

vy : : : :
== resentation chosen is really a combination of these

I

8 : a linear combination of a finite number of linearly

|

n====x Y - . - . . .
== two, because the differential equations in time that
S=== . are derived must generally be solved numerically,

n v

whereas the dependences of the unknown functions
on other variables will be represented by linear

combinations of linearly independent basis functions,

Let g(x,t) be one of the functions to be represented,
where t is time and x denotes the remaining argu-
ments of g. For each particular value of t,

g(x,t) may be approximated by a linear combination
of a finite number of linearly independent basis
functions, say \',ri(x). The coefficients in the expan-
sion are functions of t only, so that the representa-

tion of g(x,t)is

N
g(xvt) = E‘l ai (t)*i(x)- (1)

Suppose that all the unknown functions are approxi-
mated in this fashion; the problem then is to de-
rive equations that determine the time evolution of
the time-dependent coefficients and to solve those
equations, The differential euqations that are
chosen to determine the time evolution of the co-
efficients will clearly be ordinary differential
equations, and, from the standpoint of numerical
analysis, that in itself may be a distinct advantage
over having to work with a system of integro-
partial differential equations. By choosing the
basis functions appropriately, the system of ordin-
ary differential equations can be put into a form for
which there are standard finite-difference methods

of numerical solution whose properties are rela-

tively well understood, At least one such method is
formulated in a way that guarantees numerical
stability, 3’4

The mere fact of requiring that the unknown
functions be approximated in the way illustrated by
Eq, (1) does not specify the differential equations

that determine the time evolution of the coefficients,

In fact, there are infinitely many systems of equa-

tions for the coefficients that can be derived from
the exact integro-differential equations. The
solutions of these different systems of equations
will differ in the fidelity with which they represent

the time evolution of the unknown functions, and it
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is desirable to have a criterion for choosing one o
the infinitely many systems. The method proposed
for choosing a system is to substitute the approx-
imate representations of the unknown functions into
the Lagrangian density and then to determine the
system of differential equations for the time-

dependent coefficients by applying Hamilton's

principle. The only difference between this procedure

and using Hamilton's principle to derive the exact
equations is that the functional variations are
restricted to be within the class of functions
chosen for approximating the unknown functions,
In some useful sense, the system of equations so
derived should approximate the exact equations as

well as is possible,

It may be hoped that this procedure based
on Hamilton's principle will prove particularly
advantageous for nonlinear syst'ems, such as the
Vlasov system, and that some useful properties
of the approximate system of equations can be
derived, Details of the method are described in
a LASL Report.5
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THE MOTION OF A TIME-DEPENDENT
HARMONIC OSCILLATOR, AND THE
MOTION OF A CHARGED PARTICLE IN

A CLASS OF TIME-pDF PENDENT, AXIALLY
SYMMETRIC ELECTROMAGNETIC FIELDS

(H. R, Lewis)

The exact invariant described for a time-
dependent harmonic oscillator! *2 can be used to
derive an elegant representation of the general
solution of the equations of motion for the oscilla-
tor. This solution can be used to obtain the general
solution of the eciuations of motion for a charged

particle in certain electromagnetic fields.

The equations of motion for a time-dependent
harmonic oscillator are equivalent to those for a
particle moving in a certain type of electromagnetic
field which is a superposition of two components,
One component is a time-dependent, axially
symmetric, uniform magnetic field and the assoc-
iated induced electric field that corresponds to
zero charge density., The other component is the
radial electric field produced by a time-dependent,
axially symmetric, uniform charge distribution,
Because of the equivalence of the equations of
motion, the representation of the general solution
of the oscillator problem can be transcribed into a
corresponding representation of the general solu-

tion of the particle problem,

Time-Dependent Harmonic Oscillator

A time-dependent harmonic oscillator is

defined as a system described by the equation

€24 +0%(t)q = 0, (1)

where time differentiation is denoted by a dot, and
where Q(t) is an arbitrary piecewise continuous
function of time. It has been shown!’? that the

function
1. - .
I= 502 +e® (pq - @y ] (2)

is an exact invariant of Eq, (1) as long as p(t) is

any particular solution of

5 + Q%t)p-p P =0. (3)

The quantities q and ) may be complex,
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Equations (1) and (2) can be simplified
significantly by replacing the variables q and t by
variables Q and T defined by

g 1 t -2
= = = — ! '
Q= Svr=g [ o7 (). )
It is easily verified that the expression for I in
terms of Q and T is ’
1 Q
1= IQ+ 371 2")

The differential equation for Q as a function of

T corresponding to Eq. (1) is

a%Q

+Q =0.
dr?

(5)

The general solution of Eq, (5) is

Q = Ae'™ + BeIT, ®)

where A and B are arbitrary complex constants,
and I, A, and B are related by

I=2AB.

Therefore, the general solution of Eq, (5) can be
written as

Q= /% 1 [cei(T-To) + E} e -i(“To)],

where gelTo = VA /B, and ¢ and T, are arbitrary

real constants,

()

Equation (7) is an elegant rep-
resentation of the general solution of Eq. (1),

There is one representation for each p that satis-
fies Eq, (3).

Charged Particlem

Consider a particle of mass m and charge e

_moving in an electromagnetic field defined by the
potentials

- l e

0=5 2 UOE =5 ) 6F + )
. and (®)
A= %‘B(t) i; X r,

~n -
where r is the position vector, k is a unit vector
along the symmetry axis, r is distance from the
symmetry axis, x and y are cartesian coordinates

perpendicular to the symmetry axis, and 7(t) and

B(t) are arbitrary piecewise continuous functions,

The electric and magnetic fields are

E=-% -4

=-£,n(c) &+ yD --%;é(c)ﬁxr.
B=9Y XA

= B(t)k,

where T and{j\are unit vectors along the positive
x and y directions, respectively, The equations
of motion for the particle are

€% = - ¢ WLx + + B()y + B(O)Y
{9)

. 1 1. .

ey = - ¢ M)y - 2 B(t)x - B(t)x,
where

c
€ =— .
e

The equations of motion can be written simply in

terms of a complex variable, q, defined by

.
2¢

t
B(t')dt’
J‘ . (10)
The quantities r and 8 are the usual cylindrical
coordinates of the particle,

by q is

i@ .
re =x+ iy =q e

The equation satisfied

24 + (P (t)q = 0O,
where

(1)

F(t) = 2 B (&) + T(e)

The function 0?(t) may be negative.

Since Eq, (11)is that of a time-dependent
harmonic oscillator, we can now combine Eqs,
(7)and (10) to obtain expressions for r and § as

functions of t, The result is

r
5 = lal

and

(12)

"

t
argQ - i‘ I ’ B(t')dt',

where p is any solution of Eq, (3), T is defined by
Eq. (4), and where
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